.Y

=153
o

o Erl
S 0T E
g g lnewvear

20919 Ko lg

__/

<

y

00

v

MIRI BRAND
OIZ! &4 Ed| ‘ OlZl EtM E2|O| ZAIE
= 0|2 E2I(AVL E2l) ‘ AVL Ec2|2} O|Z! &4 Ed| H| !
ma 0|2 Ed| ZE ‘ Q&A
-

g

MIRI BRAND

01

O

A

EHH T GIZD|AEES 0|28 IR TE

MIRI BRAND U1
5 10 14 25 27 32 39 45 52 60 A1 01
| | =0
0 1 2 3 4 5 6 d . "
low Mid high

SE= HIOIRGIA

ErAH EHO|= =i
— 3T 1

— — 1

=0IJHH =8 di=

Kt— EFAH HHH
~L_ O/ O Hd

MIRI BRAND

qoie |zoe{ —> | oo ‘.\ﬂﬁl —> | oo In-e: —> | wom Imﬂ ~ L JHHIOIEHRE L=
NULL i —)l)

ANE ILSo=

A HIOIH £

Or i

01

0171 Bty Eq)

MIRI BRAND

02

=Ml
L. —

01! &% ECl9]

[7
70

2 A0l (12} S5 02 KIQH(BE) £/0t0| ZQ P12

A0l ON)IERl XSt & ULk

Y-

2 AEXNE

02

MIRI BRAND

03

=33 0IT! EL|

(AVL EEI)

He= EE0A 215 MEELR L NEELIC| =0[ROt

EICH 10l £l&eE AAZ 2% &= 0[2 541 EC

Y-

MIRI BRAND

03

215, QEX ME E2I9| =0l XH0IJF ZICH 1

AF
=

=01 X017t 1ELE HAIH 2|18 S Sol = S
Ot =0l XI0I1E =&

0

=0|Z log:NOZ QKI5t7| IH20H| &), 2,
AMTIO| AIZt 2EEE O(log:N)

03

MIRI BRAND

Kir

K

iof

MIRI BRAND U 04

AVL Eciet 0IT!
=4 Ecl Hlw

AVL EC2IQ} OI2 B4 EL|9] d== HIW

MIRI BRAND

04

I°
1>
=
0
oIr

MUl SS

AVL EZ|2t O|Z! &4 E2| Hlu

MIRI BRAND

05 |

AVL EZ2IC| python =

MIRI BRAND U 05

=2 0IT! Ed| JE

Node:
-~ init (self, key):
self.key = key

self.left =
self.right =
self.helight

MIRI BRAND

05

AVLTree:

height(self, root):
if root:

return 0
return root.height

get balance(self, root):
if root:

return ©
return self.height(root.left) - self.height(root.right)

MIRI BRAND

05

def right_rotate(self, y):

X = y.left
T2 =

X.right = vy
y.left = T2

y.height = 1 + max(self.height(y.left), self.height(y.right))
X.height 1 + max(self.height(x.left), self.height(x.right))

return X

- left rotate(self, x):
y = X.right
T2 = y.left

y.left
X.right = T2

X.height = 1 + max(self.height(x.left), self.height(x.right))
y.height = 1 + max(self.height(y.left), self.height(y.right))

return y

MIRI BRAND

05

=3 0IT! E

lef insert(self, root, key):

= L

if not root:
return Node(key)

it key < root.key:

root.left = self.insert(root.left, key)
elif key > root.key:

root.right = self.insert(root.right, key)
else:

return root

root.height = 1 + max(self.height(root.left), self.height(root.right))

balance = self.get balance(root)

MIRI BRAND

05

if balance > 1

return self.

if balance < -1

return self.

if balance > 1
root.left =

return self.

if balance < -1
root.right

return self.

return root

key < root.left.key:
right rotate(root)

key > root.right.key:
left_rotate(root)

key > root.left.key:
self.left rotate(root.left)

right rotate(root)

key < root.right.key:

self.right rotate(root.right)
left rotate(root)

MIRI BRAND

_—
—

pre_order(self, root):
if root:
return
print(” ".format(root.key), end="")
self.pre_order(root.left)

self.pre_order(root.right) 30

/ \
20 40
AVLTree() / \ \

10 25 50

root = tree.insert(root, 10)
root = tree.insert(root, 20)
root tree.insert(root, 30)
root = tree.insert(root, 40)
root tree.insert(root, 50)
root tree.insert(root, 25)

print("Preorder traversal of the constructed AVL tree is:")
tree.pre_order(hootﬂ

MIRI BRAND

FIN

=)

A0H =M A ZEARILICH

Thank you

