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Node:
-~ init (self, key):
self.key = key

self.left =
self.right =
self.helight
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AVLTree:

height(self, root):
if root:

return 0
return root.height

get balance(self, root):
if root:

return ©
return self.height(root.left) - self.height(root.right)
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def right_rotate(self, y):

X = y.left
T2 =

X.right = vy
y.left = T2

y.height = 1 + max(self.height(y.left), self.height(y.right))
X.height 1 + max(self.height(x.left), self.height(x.right))

return X

- left rotate(self, x):
y = X.right
T2 = y.left

y.left
X.right = T2

X.height = 1 + max(self.height(x.left), self.height(x.right))
y.height = 1 + max(self.height(y.left), self.height(y.right))

return y
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lef insert(self, root, key):

= L

if not root:
return Node(key)

it key < root.key:

root.left = self.insert(root.left, key)
elif key > root.key:

root.right = self.insert(root.right, key)
else:

return root

root.height = 1 + max(self.height(root.left), self.height(root.right))

balance = self.get balance(root)
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if balance > 1

return self.

if balance < -1

return self.

if balance > 1
root.left =

return self.

if balance < -1
root.right

return self.

return root

key < root.left.key:
right rotate(root)

key > root.right.key:
left_rotate(root)

key > root.left.key:
self.left rotate(root.left)

right rotate(root)

key < root.right.key:

self.right rotate(root.right)
left rotate(root)
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pre_order(self, root):
if root:
return
print(” ".format(root.key), end="")
self.pre_order(root.left)

self.pre_order(root.right) 30

/ \
20 40
AVLTree() / \ \

10 25 50

root = tree.insert(root, 10)
root = tree.insert(root, 20)
root tree.insert(root, 30)
root = tree.insert(root, 40)
root tree.insert(root, 50)
root tree.insert(root, 25)

print("Preorder traversal of the constructed AVL tree is:")
tree.pre_order(hootﬂ
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